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ABSTRACT

For acoustical background noise reduction a computationally effi-
cient joint MAP estimator with a super-Gaussian speech model is
presented. Compared to a recently introduced MAP estimator the
new joint MAP estimator allows an optimal adjustment of the un-
derlying statistical model to the real PDF of the speech spectral am-
plitude. The computationally efficient estimator outperforms the
Ephraim-Malah estimator and the recently proposed MAP estima-
tor in a single microphone noise reduction framework due to the
more accurate statistical model.

1. INTRODUCTION

Most single microphone speech enhancement systems rely on fre-
quency domain weighting, commonly consisting of a noise power
spectral density estimator and a speech spectrum or spectral am-
plitude estimator. The speech estimator applies a statistical esti-
mation rule based on a statistical model of the Discrete Fourier
Transform (DFT) coefficients. The well known Wiener filter esti-
mates the complex speech DFT coefficients with minimum mean
square error (MMSE), whereas the Ephraim-Malah algorithm[1]
is an MMSE estimator for the speech DFT amplitude. The sec-
ond estimator is considered advantageous from a perceptual point
of view, since the spectral phase is rather unimportant to the lis-
tener. Both estimators assume zero mean Gaussian distributions
of real- and imaginary parts for Fourier coefficients of speech and
noise. Whereas the Gaussian model is usually a good approxima-
tion for the noise DFT coefficients, the real- and imaginary part
of the speech coefficients are better modelled with super-Gaussian
densities [2]. Recently, MMSE complex spectrum estimators with
Laplace or Gamma modelling of real- and imaginary parts [2],[3]
have been proposed. Moreover, a spectral amplitude estimator with
a parametric super-Gaussian speech model for Laplace like dis-
tributed real- and imaginary parts has been introduced [4]. These
estimators have shown to provide consistently better result than the
Wiener and Ephraim-Malah estimator respectively.
In this contribution a new spectral amplitude estimator with a more
general underlying statistical model than in [4] is proposed. Due to
the possibility to apply more accurate models, the estimator outper-
forms the estimators from [4],[1].
The remainder of the paper is organized as follows: Section II gives
an overview of the noise reduction system. Section III reviews the
underlying statistical model for the speech spectral amplitude along
with novel matching of the model to experimental data. In Section
IV the statistical model is applied to derive the joint MAP estimator
for the speech spectral amplitude and phase and finally, in Section
V experimental results are presented.

2. NOISE REDUCTION SYSTEM

Figure 1 shows an overview of the single channel speech enhance-
ment system examined in this work. The noisy time signal y(l) is
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Figure 1: Single channel speech enhancement system.

composed of clean speech s(l) and additive noise n(l). After seg-
mentation and windowing with h(l), e.g. Hann window with zero
padding, the DFT coefficient of frame λ and frequency bin k is cal-
culated with:

Y (λ ,k) =
L−1

∑
l=0

y(λQ+ l)h(l)e− j2π lk/L. (1)

L denotes the DFT frame size. For the noise reduction system L =
256 is used at a sampling frequency of 20kHz. For the computation
of the next DFT, the window is shifted by Q = 112 samples. The
noisy DFT coefficient Y of amplitude R and phase ϑ consists of
speech component S and noise N

Y (λ ,k) = R(λ ,k)e jϑ (λ ,k) = S(λ ,k)+N(λ ,k), (2)

with S = SRe + jSIm and N = NRe + jNIm, where SRe = Re{S} and
SIm = Im{S}. The speech coefficient consists of amplitude A and
phase α , i.e. S(λ ,k) = A(λ ,k)e jα(λ ,k). The SNR estimation block
calculates a priori SNR ξ and a posteriori SNR γ for each DFT bin
k with the use of an estimate of the noise power spectral density σ2

N ,
obtained by Minimum Statistics [5].

ξ (λ ,k) =
σ2

S (λ ,k)
σ2

N(λ ,k)
; γ(λ ,k) =

R2(λ ,k)
σ2

N(λ ,k)
. (3)

Here, σ2
S denotes the estimate of the instantaneous frequency and

time dependent power spectral density of the speech. For estimation
of the a priori SNRs ξ we apply the well known recursive approach
proposed by Ephraim and Malah [1]. The task of the speech esti-
mation block is the calculation of spectral weights G for the noisy
spectral components Y . After IFFT and overlap-add the enhanced
time signal ŝ(l) is obtained.
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For the sake of brevity the frame index λ and frequency index k is
omitted in the following.

3. STATISTICAL MODEL

Motivated by the central limit theorem, real and imaginary part of
the noise DFT coefficients are very often modelled as zero mean
independent Gaussian [1] with equal variance. For many relevant
acoustic noises this assumption holds.
The variance of the noise DFT coefficient σ2

N is assumed to split
equally into real and imaginary part. The PDF of the noisy spectrum
Y conditioned on the speech amplitude A and phase α can then be
written as joint Gaussian:

p(Y |A,α) =
1

πσ2
N

exp

(
−|Y −Ae jα |2

σ2
N

)
(4)

The PDF of the noisy amplitude R given the speech amplitude A is
Rician

p(R|A) =
2R

σ2
N

exp

{
−R2 +A2

σ2
N

}
I0

(
2AR

σ2
N

)
(5)

I0 denotes the modified Bessel function of zeroth order.
On the other hand the speech DFT coefficients are known to be
super-Gaussian distributed. Instead of a Gaussian model Martin
[2],[3] has developed spectral estimators with Laplace or Gamma
model for statistical independent real and imaginary parts.
For the calculation of appropriate PDFs for the speech spec-
tral amplitude A, the Gauss, Laplace and Gamma PDFs for
real and imaginary parts are taken into account. Consider-
ing Gaussian components, the amplitude would be Rayleigh
distributed. For independent Laplace or Gamma components
a parametric approximation has been proposed in [4] with:

p(A) =
µν+1

Γ(ν +1)
Aν

σν+1
S

exp{−µ
A
σS

}. (6)

The Gamma function is denoted as Γ. The parameters ν , µ
determine the shape of the PDF. ν greatly influences the value
of the PDF at small values while µ gives the slope of the decay
towards higher values. It has been shown that the amplitude of a
complex Laplace or Gamma random variable with independent
components can be approximated with high accuracy using the
parametric function and different parameter sets of (ν , µ). For the
Laplace amplitude approximation (ν = 1,µ = 2.5) can be applied,
while (ν = 0.01,µ = 1.5) approximates the PDF of the amplitude
of a complex Gamma variable.

3.1 Matching with Experimental Data

To measure p(A), DFT amplitudes were taken from a narrow speech
variance interval measured with the speech enhancement system
using a database of about one hour speech for DFT bins between
500Hz and 2000Hz. Figure 2 plots the histogram after normaliza-
tion to σ2

S = 1 along with the analytic Rayleigh PDF and the ap-
proximation according to (6) with the parameter set for Laplace and
Gamma amplitude approximation respectively. Apparently, (6) pro-
vides a much better fit for the speech amplitude than the Rayleigh
PDF for both Laplace and Gamma amplitude approximation for
both low and high arguments. The real PDF of the speech amplitude
lies between the Laplace and Gamma amplitude approximation. For
the data measured with our system the Gamma amplitude approxi-
mation fits the observed data better.
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Figure 2: Histogram of speech DFT amplitudes A (σ2
S = 1) with

Rayleigh PDF and Laplace/Gamma amplitude approximation (6).

To find a set (ν , µ), that approximates the real PDF best the Kull-
back divergence according to (7) between the analytic function and
the histogram with N bins is minimized.

J(A : h) =
N

∑
n=1

(ph(n)− pA(n)) log

(
ph(n)
pA(n)

)
. (7)

Figure 3 shows the best p(A) according to (6) determined by min-
imizing the Kullback divergence. For our system the parameter set
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Figure 3: Histogram of speech DFT amplitudes and fitted approxi-
mation by (6) according to Kullback divergence (σ2

S = 1).

(ν = 0.126,µ = 1.74) fits best to the observed data.

4. SPEECH ESTIMATORS

In the following, the MAP estimator proposed in [4] is briefly re-
viewed. Secondly, a joint MAP estimator for the amplitude and
phase is introduced, which is a super-Gaussian extension of the joint
MAP estimators proposed by [6].

4.1 MAP Spectral Amplitude Estimator

A computationally efficient MAP solution following

Â = argmax
A

p(A|R) = argmax
A

p(R|A)p(A)
p(R)

(8)
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similar to [6], where Gaussian distributed SRe, SIm are assumed was
found in [4]. The super-Gaussian function (6) is used to model the
PDF of the speech spectral amplitude p(A). The Gaussian assump-
tion of noise allows to apply (5) for p(R|A). A closed form solution
was found after considering the modified Bessel function I0 asymp-
totically with I0(x) ≈ 1√

2πx
ex:

GMAP = u+

√
u2 +

ν − 1
2

2γ
with u =

1
2
− µ

4
√

γξ
(9)

Whereas the efficient MAP spectral amplitude estimator outper-
forms the Ephraim-Malah estimator for an estimation with an un-
derlying Laplace model of the DFT coefficients, it cannot be ap-
plied using a Gamma model or the optimal parameter set. This is
due to the inaccuracy introduced by the approximation of the Bessel
function. For ν < 0.5, the approximated a posteriori density p(A|R)
has a pole at A = 0, which will misplace the maximum found by (9).

4.2 Joint MAP Amplitude and Phase Estimator

To overcome the inability of the MAP estimator from [4] to cope
with an underlying Gamma model or the model, that minimizes the
Kullback divergence towards the measured data, a joint MAP es-
timator similar to [6] is introduced. Instead of maximizing the a
posteriori probability p(A|R), we now jointly maximize the proba-
bility of amplitude and phase conditioned on the observed complex
coefficient, i.e. p(A,α|Y ).

Â = argmax
A

p(A,α|Y ) = argmax
A

p(Y |A,α)p(A,α)
p(Y )

(10)

α̂ = argmax
α

p(A,α|Y ) = argmax
α

p(Y |A,α)p(A,α)
p(Y )

(11)

If the problem is formulated this way, the Bessel function and its
erroneous approximation are avoided. It can be shown by measure-
ments that the PDF of amplitude and phase is rotationally invariant,
thus we can write: p(A,α) = 1

2π p(A). (10) and (11) can be solved
similar to the MAP estimator. Taking the natural logarithm greatly
facilitates the optimization process. After insertion of (4) and (6)
we get

log(p(Y |A,α)p(A,α)) ∼−|Y −Ae jα |2
σ2

N
+ν logA−µ

A
σS

(12)

The partial derivatives of log(p(Y |A,α)p(A,α)) with respect to the
phase α and amplitude A need to be zero. Taking the partial deriva-
tive w.r.t. α results in α̂ = ϑ , i.e. the best MAP estimate for the
clean phase is the noisy phase. Solving the derivative w.r.t. the
amplitude A then leads to an estimation rule similar to that of the
super-Gaussian MAP estimator.

GJMAP = u+
√

u2 +
ν
2γ

with u =
1
2
− µ

4
√

γξ
(13)

Figure 4 compares the weights of the joint MAP estimator with op-
timal parameter set with those of the MAP estimator with Laplace
amplitude model and those of the Ephraim-Malah estimator in de-
pendence of the a posteriori SNR for two different a priori SNRs.
Most of the time, the weights of the super-Gaussian estimators are
smaller than those of the Ephraim-Malah algorithm due to the larger
value of p(A) at low amplitudes compared to the Rayleigh PDF.
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Figure 4: Weights of the joint MAP estimator with Kullback di-
vergence parameters (dotted), MAP estimator with Laplace ampli-
tude parameters (dashed) and Ephraim-Malah (solid) estimator as a
function of the a posteriori SNR γ for ξ = −5dB (upper plot) and
ξ = 5dB (lower plot).

At high a posteriori SNRs the Ephraim-Malah weights converge to-
wards the Wiener weights, i.e. ξ/(1+ξ ). The weights of the super-
Gaussian MAP estimators however increases due to the slower de-
cay of the model function towards larger values. The behavior is
more extreme for the joint MAP estimator because the underlying
speech PDF is farer away from the Rayleigh PDF.

5. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed super-Gaussian spec-
tral amplitude estimators in comparison to the state-of-the-art
Ephraim-Malah spectral amplitude estimator by instrumental mea-
surements. To measure the quality of the filter, speech s and noise
n are superposed with a given SNR. The noisy signal y is processed
with the noise reduction algorithm. Afterwards the desired and the
interfering signal are separately processed with the resulting filter
coefficients. Hence, the system enables separate tracking of speech
quality and noise reduction amount by comparing outputs to inputs
of the fixed filters.
The parameters (ν , µ) determine the underlying statistical model
of the speech amplitude. For the super-Gaussian MAP estimator
we favor (ν = 1, µ = 2.5), which approximate the amplitude of a
complex RV with independent Laplace components. In general, the
super-Gaussian MAP estimator [4] cannot be applied for ν < 0.5.
The super-Gaussian joint MAP estimator however can be applied
to every non-negative set of parameters (ν , µ). Here, we favor the
parameters, that were determined by minimizing the Kullback di-
vergence towards the measured data, i.e. (ν = 0.126, µ = 1.74).
For the reason of comparability the weights of the super-Gaussian
estimators are scaled by a constant factor greater one so that ap-
proximately the same speech quality is reached for all estimators.
The amount of noise reduction achieved then allows a comparison
between the estimators. In all versions we include the soft weight
given by Ephraim and Malah [1] with tracking of speech presence
uncertainties [7].

5.1 Performance in White noise

The results for white noise and the three different estimators, i.e.
Ephraim-Malah, MAP with (ν = 1,µ = 2.5) and joint MAP with
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(ν = 0.126,µ = 1.74) are shown in Figure 5. Figure 6 plots the per-
formance of the estimators for speech with fan noise and Figure 7
for cafeteria noise. All estimators deliver approximately the same
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Figure 5: Speech quality and noise reduction amount of statisti-
cal filter with Ephraim-Malah estimator (solid) with super-Gaussian
MAP estimator (dashed) and super-Gaussian joint MAP estimator
(dotted) for speech corrupted with white noise.
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Figure 6: Speech quality and noise reduction amount of statisti-
cal filter with Ephraim-Malah estimator (solid) with super-Gaussian
MAP estimator (dashed) and super-Gaussian joint MAP estimator
(dotted) for speech corrupted with fan noise.

speech quality due to multiplication of the MAP estimates with a
constant factor. The super-Gaussian MAP estimator achieves a sig-
nificantly higher noise attenuation than the Ephraim-Malah estima-
tor. By applying the super-Gaussian joint MAP estimator with pa-
rameters optimally adjusted to the measured data, the noise reduc-
tion amount can be increased further without decreasing the speech
quality. The performance gain is slightly lower for the fan noise.

6. CONCLUSION

We have derived a computationally efficient joint MAP estimator
with a super-Gaussian model for the speech spectral amplitude and
phase which outperforms the Ephraim-Malah estimator and a re-
cently proposed MAP estimator. The joint MAP estimator delivers
a computationally efficient calculation rule for real spectral weights,
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Figure 7: Speech quality and noise reduction amount of statisti-
cal filter with Ephraim-Malah estimator (solid) with super-Gaussian
MAP estimator (dashed) and super-Gaussian joint MAP estimator
(dotted) for speech corrupted with cafeteria noise.

i.e. the noisy phase is not modified. Compared to the recently in-
troduced MAP estimator the new joint MAP estimator allows an
optimal adjustment of the underlying statistical model to PDFs of
the speech spectral amplitude with Gamma like distributed real and
imaginary parts and thus improves the overall quality of the noise
reduction system.
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